Busemann Points of Artin Groups of dihedral Type
نویسنده
چکیده
We study the horofunction boundary of an Artin group of dihedral type with its word metric coming from either the usual Artin generators or the dual generators. In both cases, we determine the horoboundary and say which points are Busemann points, that is the limits of geodesic rays. In the case of the dual generators, it turns out that all boundary points are Busemann points, but this is not true for the Artin generators. We also characterise the geodesics with respect to the dual generators, which allows us to calculate the associated geodesic growth series.
منابع مشابه
Title The Spherical Growth Series for Pure Artin Groups of DihedralType
In this paper, we consider the kernel of the natural projection from the Artin group of dihedral type I2(k) to the corresponding Coxeter group, which we call the pure Artin group of dihedral type. We present a rational function expression for the spherical growth series of the pure Artin group of dihedral type with respect to a natural generating set.
متن کاملThe growth rates for pure Artin groups of dihedral type
We consider the kernel of the natural projection from the Artin group of dihedral type I2(k) to the associated Coxeter group, which we call a pure Artin group of dihedral type and write PI2(k). We show that the growth rates for both the spherical growth series and geodesic growth series of PI2(k) with respect to a natural generating set are Pisot numbers. 2010 Mathematics Subject Classification...
متن کاملGrowth Series for Artin Groups of Dihedral Type
We consider the Artin groups of dihedral type I2(k) defined by the presentation Ak = 〈a, b | prod(a, b; k) = prod(b, a; k)〉 where prod(s, t; k) = ststs..., with k terms in the product on the right-hand side. We prove that the spherical growth series and the geodesic growth series of Ak with respect to the Artin generators {a, b, a, b−1} are rational. We provide explicit formulas for the series.
متن کاملDihedral and cyclic extensions with large class numbers
This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups Dn, n = 3, 4, 5, and cyclic groups Cn, n = 4, 5, 6. We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modi...
متن کاملLocal indicability and commutator subgroups of Artin groups
Artin groups (also known as Artin-Tits groups) are generalizations of Artin’s braid groups. This paper concerns Artin groups of spherical type, that is, those whose corresponding Coxeter group is finite, as is the case for the braid groups. We compute presentations for the commutator subgroups of the irreducible spherical-type Artin groups, generalizing the work of Gorin and Lin [GL69] on the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAC
دوره 19 شماره
صفحات -
تاریخ انتشار 2009